extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C23×C6) = C2×C6×Dic6 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 96 | | C6.1(C2^3xC6) | 288,988 |
C6.2(C23×C6) = S3×C22×C12 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 96 | | C6.2(C2^3xC6) | 288,989 |
C6.3(C23×C6) = C2×C6×D12 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 96 | | C6.3(C2^3xC6) | 288,990 |
C6.4(C23×C6) = C6×C4○D12 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 48 | | C6.4(C2^3xC6) | 288,991 |
C6.5(C23×C6) = S3×C6×D4 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 48 | | C6.5(C2^3xC6) | 288,992 |
C6.6(C23×C6) = C6×D4⋊2S3 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 48 | | C6.6(C2^3xC6) | 288,993 |
C6.7(C23×C6) = C3×D4⋊6D6 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 24 | 4 | C6.7(C2^3xC6) | 288,994 |
C6.8(C23×C6) = S3×C6×Q8 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 96 | | C6.8(C2^3xC6) | 288,995 |
C6.9(C23×C6) = C6×Q8⋊3S3 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 96 | | C6.9(C2^3xC6) | 288,996 |
C6.10(C23×C6) = C3×Q8.15D6 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.10(C2^3xC6) | 288,997 |
C6.11(C23×C6) = C3×S3×C4○D4 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.11(C2^3xC6) | 288,998 |
C6.12(C23×C6) = C3×D4○D12 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.12(C2^3xC6) | 288,999 |
C6.13(C23×C6) = C3×Q8○D12 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 48 | 4 | C6.13(C2^3xC6) | 288,1000 |
C6.14(C23×C6) = Dic3×C22×C6 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 96 | | C6.14(C2^3xC6) | 288,1001 |
C6.15(C23×C6) = C2×C6×C3⋊D4 | φ: C23×C6/C22×C6 → C2 ⊆ Aut C6 | 48 | | C6.15(C2^3xC6) | 288,1002 |
C6.16(C23×C6) = D4×C2×C18 | central extension (φ=1) | 144 | | C6.16(C2^3xC6) | 288,368 |
C6.17(C23×C6) = Q8×C2×C18 | central extension (φ=1) | 288 | | C6.17(C2^3xC6) | 288,369 |
C6.18(C23×C6) = C4○D4×C18 | central extension (φ=1) | 144 | | C6.18(C2^3xC6) | 288,370 |
C6.19(C23×C6) = C9×2+ 1+4 | central extension (φ=1) | 72 | 4 | C6.19(C2^3xC6) | 288,371 |
C6.20(C23×C6) = C9×2- 1+4 | central extension (φ=1) | 144 | 4 | C6.20(C2^3xC6) | 288,372 |
C6.21(C23×C6) = D4×C62 | central extension (φ=1) | 144 | | C6.21(C2^3xC6) | 288,1019 |
C6.22(C23×C6) = Q8×C62 | central extension (φ=1) | 288 | | C6.22(C2^3xC6) | 288,1020 |
C6.23(C23×C6) = C4○D4×C3×C6 | central extension (φ=1) | 144 | | C6.23(C2^3xC6) | 288,1021 |
C6.24(C23×C6) = C32×2+ 1+4 | central extension (φ=1) | 72 | | C6.24(C2^3xC6) | 288,1022 |
C6.25(C23×C6) = C32×2- 1+4 | central extension (φ=1) | 144 | | C6.25(C2^3xC6) | 288,1023 |